If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19y^2+2y-45=0
a = 19; b = 2; c = -45;
Δ = b2-4ac
Δ = 22-4·19·(-45)
Δ = 3424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3424}=\sqrt{16*214}=\sqrt{16}*\sqrt{214}=4\sqrt{214}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{214}}{2*19}=\frac{-2-4\sqrt{214}}{38} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{214}}{2*19}=\frac{-2+4\sqrt{214}}{38} $
| 2(x+8)+10=4+6x | | 6-7+4b=16 | | 11a+14=95-16a | | 0=x/1,11 | | 4(n~2)-2n=0 | | 2m-6=5m+7-m | | t2– 14= -11 | | 2/3=p-1/6 | | 9p+40=7p-12 | | (8/7)y−34=(2/3)y | | 2n–-5=9 | | -(4x+6)+2=2(x-1) | | -2x^2+15x=0 | | 5(4x-1)+5=80 | | 10/8+z-(10/8)=-14/8-(10/8) | | 5t+16=6−5t. | | 2 = z4– 2 | | 4x+x-6x=13 | | -d/3=3 | | x+x+x-4=3x-4 | | 0.5x=x-4 | | 6x+12=-7-14 | | 7=x/5-1 | | 2u–1=1 | | -6(w+2)=4w+18 | | 4z/10+4=7 | | 10m–8m+m=18 | | 3x+9=-6(x-6) | | 5x+2+7x+4=180 | | -4(u-6)=-6u+28 | | 3-4x=-5x+3 | | s^2-47s-504=0 |